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Kinetics of collision processes is analyzed for dilute noble gases within a linear approxima-
tion. Dilute gas is treated as a chemically reacting mixture of dimers and monomers. Two el-
ementary reaction models are analyzed employing theoretical rate constants calculated
recently from quasiclassical trajectories. Stability of stationary states and relaxation of small
concentration perturbations are treated in terms of linearized kinetic equations. The results
obtained are generalized for heavier noble gases (neon to xenon). Helium is, because of
quantum nature, analyzed separately.
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Collisions involving small van der Waals clusters play an important role
during the initial stage of homogeneous nucleation in non-perfect gases. In
particular, the very beginning of the nucleation process, when subcritical
clusters (up to 15–20 particles) are formed, is completely governed by the
kinetics of recombination and dissociation processes1

An + A A n +1
* , n = 1, 2, …, (1)

A n +1
* + A An+1 + A . (2)

In reactions (1) and (2), asterisks denote energetically unstable clusters,
which decay rapidly due to excess of internal energy, unless they are stabi-
lized in a subsequent collision. On the other hand, as a consequence of
weakness of van der Waals bonds, energetically stable clusters are fre-
quently dissociated in collisions, even at low temperatures. Since the
monomer concentration exceeds by orders of magnitude that of all the
other aggregates present in dilute gas, only collisions of clusters with
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monomers are taken into account. Cluster–cluster collisions are usually ig-
nored.

Reaction chain (1)–(2) starts with formation of the simplest, two-particle
clusters – dimers. Thus, detailed knowledge of processes involving dimers is
of principal importance since they are immediate precursors of all the other
sub- and supercritical clusters. An important role that dimers play in the
initial stage of homogeneous nucleation has been well known for a long
time, so they have been studied both experimentally2 and theoretically3.
Noble gases, in particular argon, are usually employed as a prototype nucle-
ating system. The main reason for this is that the interaction forces are
known with high accuracy for noble gases, which is of crucial importance
in theoretical studies.

According to reactions (1) and (2), dimers are formed by a two-step
mechanism. First, an unstable dimer appears in a binary monomer collision

A + A k1 →  A 2
* . (3)

The unstable dimer is a collision complex, usually defined by a proximity
criterion: if the distance between the colliding monomers is below some
maximum value, rmax, the collision aggregate is called unstable dimer; oth-
erwise, the particles are considered free. The maximum distance, rmax, corre-
sponds to the interaction radius and must be chosen large enough. If so,
measurable results of the theory are rmax-independent4. Unstable dimers de-
cay spontaneously

A 2
* k2 →  A + A , (4)

if they are not affected by a third body. Second, unstable dimer may be sta-
bilized in a collision with a third body, preferably a monomer. In such sta-
bilization collisions, two types of dimers are formed: stable dimer and
metastable dimer. The former has a negative internal energy, representing a
bound two-particle system. The latter is rotationally excited and bears a
positive internal energy, which is, however, below the centrifugal barrier of
the effective potential energy curve (see Fig. 1). Although the metastable
dimers are classically bound, they can decay spontaneously by the quan-
tum mechanical tunneling. Significance of noble gas metastables was recog-
nized long before5,6 and they must be taken into account for a model of
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collision processes in dilute noble gases to be realistic. Let A2 and A 2
+ denote

stable and metastable dimers, respectively, then the stabilization reactions
may be written as follows7

A + A 2
* k3

+

 →  A + A 2
+ (5)

A + A 2
* k3 →  A + A2 . (6)

In addition to the stabilization processes, collision-induced dissociation
of stabilized dimers7

A + A 2
+ k4

+

 →  A + A 2
* (→ 3A) (7)

A + A2
k4 →  A + A 2

* (→ 3A) , (8)

and transitions between stables and metastables,

A + A 2
+ k5 →  A + A2 (9)

A + A2
k6 →  A + A 2

+ , (10)

Collect. Czech. Chem. Commun. (Vol. 65) (2000)

Kinetics of Collision Processes 143

FIG. 1
A typical effective noble gas potential energy
curve for a small value of rotation quantum
number
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take place in dilute noble gases. Both processes must be considered, even at
low temperatures, because of extremely shallow minima in noble gas
two-body interaction potentials.

As mentioned above, metastable dimers decay spontaneously by a quan-
tum mechanical tunneling through the centrifugal barrier

A 2
+ k8 →  A + A . (11)

The reverse process is also possible

A + A k7 →  A 2
+ . (12)

Although they may be important, these processes are ignored in this study
because the rate coefficients for reactions (11) and (12) are not known at
present, except for results of a preliminary calculation performed recently
using the WKB (Wentzel–Kramers–Brillouin) approximation8. To fill this
gap, we are performing accurate quantum mechanical calculations of
quasistationary states in noble gas dimers now.

Cluster–cluster collisions are usually ignored in literature because of their
negligible probability in a dilute gas. Nevertheless, some previous studies
seem to indicate that the cluster–cluster collisions may be important, e.g.
for the formation of stabilized argon trimers9. To our knowledge, rate con-
stants for dimer–dimer collision processes are not available at present, how-
ever. Thus, these processes are not considered in this study.

Below, recently calculated8,10,11 values of the rate coefficients for reac-
tions (3)–(10) are employed in an analysis of stationary states as well as re-
laxation processes in dilute noble gases. Two models of elementary
collision processes are formulated and analyzed separately so that impor-
tance of the transitions between stables and metastables, not previously as-
sumed in literature, can be assessed. The conditions for thermal
equilibrium in chemically reacting mixtures are employed in a calculation
of stationary concentrations of noble gas dimers and monomers. Relaxation
of small perturbations of the equilibrium concentrations is analyzed in
terms of linearized kinetic equations.

Collect. Czech. Chem. Commun. (Vol. 65) (2000)

144 Kalus:



THEORETICAL

Collision Processes in Dilute Gases

With accuracy up to the second order of magnitude of the overall particle
density, non-perfect dilute gas can be described10 as a mixture of monomers
and dimers participating in reactions (3)–(12). This approximate picture
may be fairly realistic for the very beginning of homogeneous nucleation,
when monomers and dimers are the only significant clusters and the larger
van der Waals complexes may be ignored. Provided the rate coefficients for
reactions (3)–(12) are available, a thorough analysis of the initial stage of
homogeneous nucleation can be performed. Recently, theoretical values of
rate coefficients were calculated for reactions (3)–(10) for all the noble gases
using quasiclassical trajectory methods11,12. They are surveyed in the fol-
lowing paragraph. In this paper, we employ them in kinetic analysis. Two
models of elementary processes in dilute noble gases are analyzed below:

Standard model. This model is usually considered in literature. Stable and
metastable dimers are not distinguished, processes (9)–(12) are not in-
cluded. Let A2

# denote a stabilized (stable or metastable) dimer, then the
standard model is given by the following processes

A + A k1 →  A 2
* (3)

A 2
* k2 →  A + A (4)

A + A 2
* k3

#

 →  A + A 2
# (13)

A + A 2
# k4

#

 →  A + A 2
* . (14)

Rapid equilibrium is often assumed7 for reactions (3) and (4), which re-
duces the above scheme to a couple of processes – ternary recombination
and collision-induced dissociation:

A + A + A k r
#

 →  A + A 2
# (15)
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A + A 2
# k4

#

 →  A + A + A , (16)

where kr
# = (k1/k2)k3

#

Extended model. Within this model, stable and metastable dimers are dis-
tinguished explicitly; however, both formation and decay of metastables
via quantum tunneling through the rotational barrier are ignored. Thus, re-
actions (3)–(10) are involved in the extended model.

Reaction Rate Coefficients

Recently, rate coefficients for reactions (3)–(10) were calculated11,12 using
quasiclassical trajectory (QCT) methods13. The QCT methods consist in nu-
merical integration of classical equations of motion for the collision trajec-
tories, the initial conditions of which are chosen properly. Batches of
classical trajectories are then averaged to get the desired macroscopic reac-
tion parameters, such as the reaction cross sections and the rate coeffi-
cients. In the above calculations, the initial conditions were generated to
simulate a thermally equilibrium gas. Classical statistics was used for trans-
lation degrees of freedom of colliding systems, both classical and
quasiclassical statistics were used for rotations and vibrations of noble gas
dimers. Except helium, the classical and quasiclassical rate coefficients cor-
respond to each other with high accuracy12. Thus, the classical approxima-
tion seems to be valid for the heavier noble gases (neon, xenon). On the
other hand, classical approach completely fails for helium. Therefore,
quasiclassical data are employed for helium in the following.

Accuracy of QCT data crucially depends on the potential energy surfaces
used. In the above calculations, the potential energy surface was con-
structed as a sum of pairwise contributions using sophisticated pair func-
tions by Aziz and collaborators – HFDID1 for argon14 and HFDB-2 for the
other noble gases15. According to the data published previously16, many-
body contributions to the interaction energy were ignored.

All the rate coefficients are temperature-dependent, some of them de-
pending on the interaction radius, rmax. These dependences can be repre-
sented by simple analytical formulae. For example, the following
expressions can be obtained11 for the rate coefficients k1 and k2

k r T1
1 2 2

2* / * *= π max (17)
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k
r

T2

17028 00014*

*

*. .
,= ±

max

(18)

where reduced, dimensionless quantities are used: r r rmax
*

max m= / , T* =
kBT/ε, [ ]k k r m1

*
1 m

2= / /ε and ( )[ ]k k r m2
*

2 m= / / /1 ε . Here, ε and rm
stand for the depth and the position of the minimum in the pair potential,
respectively, m being mass of a noble gas atom, and kB is the Boltzmann
constant.

The recombination rate constants, kr
+ = (k1/k2)k3

+ and kr = (k1/k2)k3, for the
ternary processes

A + A + A k r
+

 →  A + A 2
+ (19)

A + A + A k r →  A + A2 , (20)

are rmax-independent11. Their temperature dependence can be represented
by a simple, Arrhenius-like formula11

k AT C TC
r = 1

2exp( ) , (21)

which corresponds to a quadratic temperature dependence of the activation
energy, E E C T C Tact act

0= + +1 2
2 , with Eact

0 0= . Suppose dimensionless quan-
tities T k T* /= B ε and k k r mr

*
r m

5= / /ε are used; then, for the heavier no-
ble gases (neon to xenon), the temperature dependence of recombination
rate constants, kr

+ and kr, can be represented by universal functions, kr
+ * (T*)

and kr
* (T*), respectively, which allows the results to be generalized for all

the noble gases, except helium11. Necessary adjustable parameters, which
were obtained from least-squares fits to the QCT data, are summarized in
Table I.

Similarly, the rate constants for the dissociation processes, reactions (7)
and (8), and those for the transitions between stables and metastables, reac-
tions (9) and (10), are rmax-independent. Temperature dependence of disso-
ciation and stable to metastable transition rate constants can be repre-
sented by12
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TABLE I
Numerical values of the adjustable parameters used in analytical representation of ternary
noble gas atom–atom recombination rate coefficients, 3 A kr

+

 → A + A2
+, 3 A kr → A + A2

Rate coefficient A C1 C2

kr
+ 20.45 ± 0.64 –0.155 ± 0.019 –0.421 ± 0.024

kr 19.76 ± 0.39 –0.278 ± 0.010 –0.445 ± 0.016

TABLE II
Numerical values of the adjustable parameters used in analytical representation of dissocia-
tion rate coefficients, A + A2

+ k4
+

 → 3 A, A + A2
k4 → 3 A

Rate coefficient A Eact
0 C1

k4
+ 14.33 ± 0.23 0.151 ± 0.014 0.424 ± 0.011

k4 10.44 ± 0.22 0.561 ± 0.021 0.419 ± 0.013

k4 (He) 53.57 ± 0.03 0.0 0.368 ± 0.001

TABLE III
Numerical values of the adjustable parameters used in analytical representations of rate coef-
ficients for transitions between stable and metastable dimers, A + A2

+ k5 → A + A2, A + A2
k6 → A + A2

+

Rate coefficient A Eact
0 C1 C2

k5 6.505 ± 0.056 0.0 –0.0712 ± 0.0095 0.0377 ± 0.0066

k6 5.487 ± 0.074 0.443 ± 0.012 0.0582 ± 0.0094 0.0



k AT
E
k T

C=


 


1

0

exp – ,act

B

(22)

which corresponds to a linear temperature dependence of the activation en-
ergy, E E C Tact act

0= + 1 , whereas Eq. (21) is applicable12 to the metastable-
to-stable transition. Again, reduced quantities T* and k k r mn

*
n m

2= / /ε , n =
4, 5, and 6, are used, which allows the results to be generalized for all the
noble gases, except helium12. Numerical values of the adjustable parameters
are summarized in Tables II and III. As no metastable states exist for weakly
bound helium dimer17, no data are shown for the processes involving he-
lium metastables in Tables I–III.

RESULTS AND DISCUSSIONS

Thermal Equilibrium in Monomer–Dimer Mixture

The equilibrium concentrations of noble gas monomers and dimers can be
found, within the above kinetic models, as a stationary solution of the cor-
responding kinetic equations. Alternatively, they can be determined using
the conditions of thermodynamic equilibrium in a chemically reacting
mixture18. Clearly, if the kinetic models are correct, thermodynamic results
must correspond to those obtained from kinetic considerations, and vice
versa. A more detailed analysis of the problem is given elsewhere10. The fol-
lowing may be observed from this analysis: (i) if only monomers and
dimers are taken into account and the higher-order clusters are ignored, the
equilibrium concentrations obtained from kinetics are accurate up to the
second order of magnitude of the overall particle density, c; and (ii) the sta-
tionary concentrations obtained from kinetics correspond to those ob-
tained using statistical thermodynamics, at least up to the second order of
magnitude of the overall particle density, as long as the rate coefficients for
the reactions involved obey some constraints. In our QCT calculations,
those constraints were used to verify reliability of the computational data11.

Let c10, c20
* , c20

+ , and c20 represent the equilibrium concentrations of
monomers, unstable dimers, metastable dimers, and stable dimers, respec-
tively. Then, the following expressions can be obtained from statistical
thermodynamics

c c z c10 2
22= − ± …ζ (int) (23)
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c z c20 2
2* *= ± …ζ (24)

c z c20 2
2+ += ± …ζ (25)

c z c20 2
2= ± …ζ . (26)

Here, z2
* , z2

+ , and z2 denote internal partition functions for unstable,
metastable, and stable dimers, respectively, z z z z2 2 2 2

(int) *= + ++ , and
( )[ ]ξ = π2h mk T/ B

3 2
, where h is the Planck constant. Reduced, dimension-

less concentrations, c* = c rm
3 , are used throughout this study. As an illustra-

tion of Eqs (23)–(26), the equilibrium concentrations of argon dimers are
shown in Fig. 2 over a range of reduced temperatures T* = 0.3–3.5 (40–500 K
for argon). In this figure, c* = 0.00141 (which corresponds to the pressure of
105 Pa at 0 °C for argon), and rmax

* = 2.53 (9.5 · 10–10 m for argon). The theo-
retical value of the amount of stabilized dimers obtained for 0 °C, about
1‰, corresponds rather well to the experimental results2.

Relaxation in Dilute Gases

Relaxation of small monomer and dimer concentration perturbations to-
wards the equilibrium is analyzed below. The standard model and the ex-
tended model are treated separately.
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FIG. 2
Relative concentrations of stable, metastable,
and unstable dimers in dilute argon (c* =
0.00141, rmax

* = 2.53): 1 unstable, 2 metastable,
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Standard model. Within the standard model, the time evolutions of the
monomer and dimer concentrations are governed by the following kinetic
equations:

d

d

c

t
k c k c1

1 1
2

2 22 2= − + * (27)

d

d

c

t
k c k c k c c k c c2

1 1
2

2 2 3 1 2 4 1 2

*
* # * # #= − − + (28)

d

d

c

t
k c c k c c2

3 1 2 4 1 2

#
# * # # ,= − (29)

where the standard model rate coefficients k3
# and k4

# are given as follows:

k k k3 3 3
# = ++ (30)

k
z

z z
k

z

z z
k4

2

2 2
4

2

2 2
4

# .=
+

+
+

+

+
+

+
(31)

In Eq. (31), equilibrium occupation of both stable and metastable rotation-
vibration states is assumed. In other words, rapid equilibrium is assumed
for the transitions between stables and metastables, A2 + A A 2

+ + A. If the
volume of the system and the number of atoms are kept constant, the parti-
cle conservation law,

( )c c c c1 2 22+ + =* # , (32)

must be obeyed. Here, c c c2 2 2
# ≡ ++ denotes the concentration of stabilized

(both stable and metastable) dimers.
Stationary concentrations, c10, c20

* , and c20
# , can be obtained by solving

Eqs (27)–(29) with the left-hand sides set zero. As mentioned above, the sta-
tionary concentrations correspond, at least up to the second order of mag-
nitude of the overall particle density, c, to the equilibrium concentrations
given by Eqs (23)–(26). If the stationary concentrations are perturbed by
small perturbations, ′c1 = c1 – c10, c c c2 2 20

′ = −* * * , and c c c2 2 20
′ = −# # # , they will
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relax back to the equilibrium in accordance with the following linearized
kinetic equations:

d

d

c

t
k c c k c1

1 10 1 2 24 2
′

= − ′+ ′* (33)

( ) ( )d

d

c

t
k c k c k c c k k c c k2

1 10 3 20 4 20 1 2 3 10 2 42
*

# * # # # *′
= − + ′− + ′+ # #c c10 2 ′ (34)

( )d

d

c

t
k c k c c k c c k c c2

3 20 4 20 1 3 10 2 4 10 2

#
# * # # # * # # .

′
= − ′+ ′− ′ (35)

Clearly, the particle conservation law must be obeyed,

( )c c c1 2 22 0′+ ′+ ′ =* # . (36)

Equations (33)–(35) can be solved, after ′c1 has been excluded using Eq. (36),
in a standard way,

( )c

c
A

x

y
t B

x

y
2

2

1

1
1

2

2

*

#
exp – / exp –

′
′



 


 = 


 


 + 


 


τ ( )t / .τ 2 (37)

The relaxation times, τ1 and τ2, are then given as follows:

( ) ( )1
4 4

1
2 1 3

3

2
1 4

2

τ
= + + − − ± …k k k c

k

k
k k c#

#
# (38)

1
2 2

2
4

1

2
4 3

3 4

1

2

τ
= − − +




 


 ±…k c

k

k
k k

k k

k
c# # #

# #

(39)

In the following, dimensionless relaxation times, ( )τ τ ε* / /= r mm , are
used.

If rapid equilibrium is assumed for A + A A 2
* , kinetic equations (27)–(29)

simplify to

d

d r

c

t
k c k c c2

1
3

4 1 2

#
# # #= − (40)
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and the particle conservation law (32) transforms to

c
k

k
c c c1

1

2
1
2

22+ +


 


 =# , (41)

where kr
# ≡ (k1/k2)k3

# . Clearly, stationary solution of Eqs (40) and (41) is
identical to that of Eqs (27)–(29), and (32); relaxation towards equilibrium
is different, however. Linearized equations (40) and (41) yield
c A t2

′ =# exp(– / )τ , where

( )1
24

1

2
4 3

2

τ
= − − ± …k c

k

k
k k c# # # (42)

It is clear from Eq. (42) that the relaxation time τ corresponds to the relax-
ation time τ2 of the standard model, Eq. (39). The relaxation time τ1 is
equal zero now, because it corresponds to the relaxation processes pertinent
to the violation of equilibrium for A + A A 2

* , which is not admitted in the
present case.

Curves representing temperature dependence of the relaxation times τ1,
τ2, and τ are shown in Fig. 3. Since the relaxation times depend, more or
less, on the interaction radius, rmax, and the overall particle density, c, sev-
eral curves, obtained for different values of rmax and c, are displayed in
Fig. 3. The following may be observed in this figure:

(a) Within the standard model, two relaxation modes exist, the character-
istic times of which, τ1 and τ2, are different by orders of magnitude. It is
clear from Eqs (38) and (39) that τ1 corresponds predominantly to the rapid
processes of formation and spontaneous decay of unstable dimers, reactions
(3) and (4), whilst much slower stabilization and dissociation processes, re-
actions (5)–(8), affect primarily τ2.

(b) The longer relaxation time, τ2, depends strongly on the overall parti-
cle density, c, whereas the shorter one, τ1, is almost c-independent.

(c) Dependence on the interaction radius, rmax, is much more apparent
for the shorter relaxation time. This is also clear from Eq. (38): the zero-
order expansion term of the right-hand side of Eq. (38) is rmax- dependent,
whereas the same dependence does not appear for τ2 before the sec-
ond-order term; see Eq. (39).

(d) Both τ1 and τ2 are positive. Thus, the stationary state of the standard
model is asymptotically stable.
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(e) If equilibrium in A + A A 2
* is assumed, a relaxation time is obtained

that is rather close to the standard model longer characteristic time, τ2. This
means that the assumption of rapid equilibrium is rather plausible for the
formation and the decay of unstable dimers, A + A A 2

* .
Extended model. For this model, within which stable and metastable

dimers are distinguished explicitly, the kinetic equations read as follows:

d

d

c

t
k c k c1

1 1
2

2 22 2= − + * (43)

d

d

c

t
k c k c k k c c k c c k c c2

1 1
2

2 2 3 3 1 2 4 1 2 4 1 2

*
* *– – ( )= + + ++ + + (44)

d

d

c

t
k c c k k c c k c c2

3 1 2 4 5 1 2 6 1 2

+
+ + += + +* – ( ) (45)
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FIG. 3
Characteristic relaxation times for the standard reaction model as a function of temperature;
a rapid relaxation mode, b slow relaxation mode (❒ , ❍ results obtained if rapid equilibrium
for A + A A2

* is assumed): 1 c* = 0.00064, rmax
* = 3.2 (12.0 · 10–10 m for argon), 2 c* =

0.00064, rmax
* = 2.53 (9.5 · 10–10 m), 3 c* = 0.00256, rmax

* = 3.2 (12.0 · 10–10 m), 4 c* = 0.00256,
rmax

* = 2.53 (9.5 · 10–10 m)
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d

d

c

t
k c c k c c k k c c2

3 1 2 5 1 2 4 6 1 2= + ++* – ( ) (46)

and the particle conservation law gains the following form

c c c c c1 2 2 22+ + + =+( ) .* (47)

Again, the time evolution of small concentration perturbations is described
within the linear approximation. After the atom conservation condition for
the concentration perturbations, ( )′ + + + ′ =′ ′+c c c c1 2 2 22 0* , is employed to
exclude the monomer concentration, ′c1 , Eqs (43)–(46) can be written in a
form of three linear ordinary differential equations for three unknown,
time-dependent functions, c2

′* , c2
′+ , and ′c2 . Solution of these equations can

be found in a standard way, which yields three characteristic times. To
avoid unnecessary complexity, overall particle density expansions up to the
first order of magnitude are given below:

1
4

1
2 1 3 3τ

= + + + ± …+k k k k c( ) (48)

( )
1

2
1 1

2

4 4 5 6 4 4 4 6 4 5

4 4 5 6

~τ
=

+ + +
+ −

+ +

+ + +

+ + +

+
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Temperature dependence curves for the relaxation times given by Eqs
(48)–(50), as well as those of the standard model, are shown in Fig. 4. The
following conclusions can be made from this figure:

(a) The extended model characteristic times are positive for the tempera-
tures assumed, at least up to the first order of magnitude with respect to
the overall particle density. Thus, the stationary solution of Eqs (43)–(47) is
asymptotically stable.

(b) The relaxation times differ significantly from each other. The fastest
process relaxation time, τ1, is still much smaller than both τ2 and ~τ2 . There-
fore, the assumption of rapid equilibrium is well acceptable for A + A A 2

* ,
even within the extended model. On the other hand, the difference be-
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tween the longest time, τ2, and the medium one, ~τ2 , is much smaller than
the difference between τ2 and τ1. This means that for the transitions A +
A2 A + A 2

+ the assumption of rapid equilibrium, adopted within the stan-
dard model, may be of a limited validity.

(c) There is an evident correspondence between the relaxation times τ1
and τ2 obtained from the present model and those from the standard
model. The deviations are only about several per cent for all the tempera-
tures considered. As mentioned above, τ1 and τ2 correspond mainly to the
formation and spontaneous decay of unstable dimers, and to the stabiliza-
tion and dissociation processes, respectively. The new relaxation time, ~τ2 ,
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FIG. 4
Characteristic relaxation times for the extended reaction model as a function of tempera-
ture; a–c relaxation modes (❒ , ❍ results obtained from the standard model): 1 c* = 0.00064,
rmax

* = 3.2 (12.0 · 10–10 m for argon), 2 c* = 0.00064, rmax
* = 2.53 (9.5 · 10–10 m), 3 c* = 0.00256,

rmax
* = 3.2 (12.0 · 10–10 m), 4 c* = 0.00256, rmax

* = 2.53 (9.5 · 10–10 m)
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seems to correspond primarily to the transitions between stables and
metastables, reactions (9) and (10).

(d) The longer relaxation times, τ2 and ~τ2 , depend significantly on the
overall particle density, c, whilst the same dependence is much less appar-
ent for τ1. On the other hand, both longer characteristic times do not sig-
nificantly depend on the interaction radius, rmax. They are even rmax-
independent within the linear approximation with respect to c. The de-
pendence of τ1 on rmax is, however, well pronounced.

Helium. As mentioned above, the classical data, on which the generalized
formulae used for the heavier noble gases are based, are not correct for he-
lium, since they differ significantly from the corresponding quasiclassical
data. In this paragraph, quasiclassical rate constants8,12 are used to perform
a similar analysis for helium such as that presented above for the heavier
noble gases. Clearly, we are aware of limits of the quasiclassical approach,
which may not be fully adequate for light helium atoms.

If the quasiclassical rate constants are employed, instead of the classical
ones, the following is taken into account: (i) helium dimer has only one
bound state, the dissociation energy of which is very small17 (about 1.6 · 10–3 K),
and (ii) no metastable, quasibound state exists in helium dimer17. Thus, no reac-
tions involving helium metastables occur in a realistic reaction model:

He + He k1 →  He2
* (51)

He2
* k2 →  He + He (52)

He + He2
* k3 →  He + He2 (53)

He + He2
k4 →  He + He2

* . (54)

In Eqs (51)–(54), asterisk denotes, in accordance with the convention used
throughout this study, an unstable dimer. Evidently, reactions (51)–(54) are
the same as those of the standard model, provided the following substitu-
tions are made: k k3 3→ # , k k4 4→ # , and c c2 2→ # . Thus, the kinetic equations
corresponding to reactions (51)–(54) can be analyzed in the exactly same
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way as those of the standard model. The characteristic relaxation times, ob-
tained from such an analysis, are summarized in Fig. 5. It is clear from this
figure that the shorter relaxation time is not much affected by the quantum
effects mentioned above. However, this can be expected, since the domi-
nant, zero-order term on the right-hand side of Eq. (38) is of purely classical
nature within the present approach. On the other hand, remarkable differ-
ences are apparent between the classical characteristic time and the
quasiclassical one for the slow relaxation mode, τ2; cf. Figs 3 and 5. For
lower temperatures, reduced values of the quasiclassical time obtained for
helium are 10–20 times smaller than the corresponding classical ones. Even
for higher temperatures, this difference is still well apparent, although less
dramatic (4–6 times).

CONCLUSIONS

Theoretical reaction rate constants, obtained recently from quasiclassical
trajectory calculations11,12, have been employed in an analysis of the ther-
mal equilibrium and the relaxation processes in dilute noble gases. A model
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FIG. 5
Characteristic relaxation times for helium as a function of temperature; a rapid relaxation
mode, b slow relaxation mode: 1 c* = 0.00064, rmax

* = 3.2 (9.5 · 10–10 m for helium), 2 c* =
0.00064, rmax

* = 2.53 (7.4 · 10–10 m), 3 c* = 0.00256, rmax
* = 3.2 (9.5 · 10–10 m), 4 c* = 0.00256,

rmax
* = 2.53 (7.4 · 10–10 m)
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of a chemically reacting mixture of monomers and dimers has been used to
describe a dilute gas, which, as shown elsewhere, yields results accurate up
to the second order of magnitude with respect to the overall particle den-
sity10. Two models of elementary reaction processes have been formulated
and analyzed within the linear stability theory. For heavier noble gases
(neon to xenon), classical rate constants have been used and the results
have been presented in a generalized form. Some quantum effects have
been taken into account for helium and the results obtained within the
quasiclassical approximation have been presented separately.

Both metastable and unstable dimers play an important role in dilute
noble gases. For the former, this conclusion is in accordance with other
studies5. On the other hand, unstable dimers are not usually taken into
account in literature. According to the results obtained, ignoring them may
lead to serious errors, e.g. in calculation of the second virial coefficient8.
Thus, all three types of noble gas dimers – stable, metastable, and unstable
– have been taken into account in the present study.

Relaxation of slightly perturbed monomer and dimer equilibrium con-
centrations has been studied using linearized kinetic equations; characteris-
tic relaxation times have been obtained for both models of elementary
reaction processes. In particular, two relaxation modes have been detected,
the characteristic times of which, τ1 and τ2, differ significantly, by orders of
magnitude at lower temperatures. For example, for argon we get τ1 ≈ 5 ·
10–12 s and τ2 ≈ 10–9 s at the nitrogen boiling temperature (77.3 K) and for
the overall particle concentration c* = 0.00064. This value of c* corresponds
to a pressure of 50 kPa at 0 °C for argon. It follows from the above analysis
that the rapid relaxation mode is predominantly influenced by the forma-
tion and spontaneous decay of unstable dimers, i.e. by very rapid atom–
atom collisions. On the other hand, the slow relaxation mode corresponds
to the stabilization and dissociation processes induced by collisions of
dimers with monomers, i.e. to infrequent three-atom collisions. The rapid
equilibrium for processes A + A A 2

* , often assumed in literature, is shown
to be rather plausible for the temperatures involved.

Most of the QCT rate coefficients used in this work were calculated on the computers belonging to
the Supercomputing Centre of Charles University, Prague, and the Supercomputing Centre of the Insti-
tute of Mining and Metallurgy, Ostrava. The work was in part supported by the grant No. 3708/96 of
University of Ostrava, and the grant No. 13/98 of Faculty of Science, University of Ostrava.
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